Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes in nonobese diabetic mice: modulation of spontaneous 60-kDa heat shock protein autoimmunity.
نویسندگان
چکیده
Nonobese diabetic (NOD) mice develop insulitis and diabetes through a process involving autoimmunity to the 60-kDa heat shock protein (HSP60). Treatment of NOD mice with HSP60 or with peptides derived from HSP60 inhibits this diabetogenic process. We now report that NOD diabetes can be inhibited by vaccination with a DNA construct encoding human HSP60, with the pcDNA3 empty vector, or with an oligonucleotide containing the CpG motif. Prevention of diabetes was associated with a decrease in the degree of insulitis and with down-regulation of spontaneous proliferative T cell responses to HSP60 and its peptide p277. Moreover, both the pcDNA3 vector and the CpG oligonucleotide induced specific Abs, primarily of the IgG2b isotype, to HSP60 and p277, and not to other islet Ags (glutamic acid decarboxylase or insulin) or to an unrelated recombinant Ag expressed in bacteria (GST). The IgG2b isotype of the specific Abs together with the decrease in T cell proliferative responses indicate a shift of the autoimmune process to a Th2 type in treated mice. These results suggest that immunostimulation by bacterial DNA motifs can modulate spontaneous HSP60 autoimmunity and inhibit NOD diabetes.
منابع مشابه
DNA vaccination with heat shock protein 60 inhibits cyclophosphamide-accelerated diabetes.
Nonobese diabetic (NOD) mice spontaneously develop diabetes as a consequence of an autoimmune process that can be inhibited by immunotherapy with the 60-kDa heat shock protein (hsp60), with its mycobacterial counterpart 65-kDa (hsp65), or with other Ags such as insulin and glutamic acid decarboxylase (GAD). Microbial infection and innate signaling via LPS or CpG motifs can also inhibit the spon...
متن کاملImmune modulation induced by tuberculosis DNA vaccine protects non-obese diabetic mice from diabetes progression.
We have described previously the prophylactic and therapeutic effect of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in experimental murine tuberculosis. However, the high homology of this protein to the corresponding mammalian 60 kDa heat shock protein (Hsp60), together with the CpG motifs in the plasmid vector, could trigger or exacerbate the developme...
متن کاملInduction of autoimmune diabetes through insulin (but not GAD65) DNA vaccination in nonobese diabetic and in RIP-B7.1 mice.
Insulin has been used to modify T-cell autoimmunity in experimental models of type 1 diabetes. In a large clinical trial, the effect of insulin to prevent type 1 diabetes is currently investigated. We here show that insulin can adversely trigger autoimmune diabetes in two mouse models of type 1 diabetes, using intramuscular DNA vaccination for antigen administration. In female nonobese diabetic...
متن کاملB lymphocytes are crucial antigen-presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice.
Recent reports have shown that B cells play a key role in the pathogenesis of T cell-mediated autoimmune diseases such as insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic mice (NOD). We have investigated the role of B lymphocytes as APCs in the generation of autoreactive T cell responses by comparing spontaneous responses to self Ags in B cell-deficient and wild-type NOD mice. We...
متن کاملDNA vaccine containing the mycobacterial hsp65 gene prevented insulitis in MLD-STZ diabetes
BACKGROUND Our group previously demonstrated that a DNA plasmid encoding the mycobacterial 65-kDa heat shock protein (DNA-HSP65) displayed prophylactic and therapeutic effect in a mice model for tuberculosis. This protection was attributed to induction of a strong cellular immunity against HSP65. As specific immunity to HSP60 family has been detected in arthritis, multiple sclerosis and diabete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 165 11 شماره
صفحات -
تاریخ انتشار 2000